
Enabling Large-Scale Storage in Sensor Networks with
the Coffee File System

Nicolas Tsiftes, Adam Dunkels, Zhitao He, Thiemo Voigt
Swedish Institute of Computer Science

{nvt,adam,zhitao,thiemo}@sics.se

ABSTRACT

Persistent storage offers multiple advantages for sensor
networks, yet the available storage systems have been
unwieldy because of their complexity and device-specific
designs. We present the Coffee file system for flash-
based sensor devices. Coffee provides a programming
interface for building efficient and portable storage ab-
stractions. Unlike previous flash file systems, Coffee
uses a small and constant RAM footprint per file, mak-
ing it scale elegantly with workloads consisting of large
files or many files. In addition, the performance over-
head of Coffee is low: the throughput is at least 92% of
the achievable direct flash driver throughput. We show
that network layer components such as routing tables
and packet queues can be implemented on top of Coffee,
leading to increased performance and reduced memory
requirements for routing and transport protocols.

Categories and Subject Descriptors

D.4 [Operating Systems]: Storage Management; D.2.8
[Software Engineering]: Metrics—complexity mea-

sures, performance measures

General Terms

Algorithms, Design, Measurement, Performance

Keywords

Sensor networks, storage-centric, file systems, storage
abstractions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’09, April 13–16, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-371-6/09/04 ...$5.00.

1. INTRODUCTION

An emerging class of sensor networks uses flash mem-
ory for sensor data logging [3], object databases [15],
software modules [4], and as a virtual memory back-
end [10]. Existing storage systems for sensor networks
typically access the flash memory directly and ad hoc,
or they use too much RAM to handle large flash mem-
ories. A common storage layer ensures that boundaries
between files are protected, that it is easy to switch to
other storage devices, and that difficult device semantics
are hidden from the programmer. Storage abstractions
become more portable and simpler to develop when the
focus can be on the higher level design, instead of on
the low level flash memory management.

Log-structuring [23] has gained foothold as the most
common flash file system design. Flash memory has
a physical restriction that no data can be overwritten
without erasing a large amount of data first. By record-
ing the file changes in log records instead of writing them
in place, the log is a natural fit for flash memory seman-
tics. Although a log-structured design is typically mem-
ory intensive, the sensornet community has learned how
to adapt it to small sensor devices. Still, existing im-
plementations have high memory and code complexity
because a considerable share of the file metadata must
be cached to gain an acceptable performance. Since
in-RAM metadata typically grows linearly [2] with the
file sizes, this technique is unwieldy for coexistence with
other complex system components.

We design the Coffee File System to meet the need
for a generic, high-speed, flash-based file system that is
feasible for a wide range of sensor devices. In contrast
with earlier fully functional flash file systems, Coffee has
a constant RAM footprint per open file. A memory com-
plexity of O(1) per file is indeed particularly important
for sensor devices, where the non-volatile storage can
be several orders of magnitude larger than the RAM.
Coffee serves as a thin file system layer that facilitates
platform-independent storage abstractions through an
expressive programming interface. In its default setup,
Coffee requires 5kb ROM for the code, and 0.5kb RAM

349

at runtime. Although our premier intention is to re-
duce the complexity of storage systems, the file system
is also efficient to support demanding storage-centric
sensor applications and networking components. The
performance of the most used file operations–read and
append–is over 92% of the direct flash driver speed.

Conventional log-structured flash file systems force all
files to share a page-based log that spans over the flash
memory. Thus, their performance and use of flash space
is far from optimal when modifications are scattered and
smaller than the page size. Like log-structured flash file
systems, Coffee stores new data in a log, yet our design
is a significant departure from the conventional method.
Append-only files are stored in the simplest way as con-
tiguous group of pages. Once a file is modified, Coffee
creates an accompanying micro log structure and links
it with the file. Prior to creating the log, the software
using the file may configure the log size and the log
record granularity. Abstract storage implementations
can fine-tune their micro logs according to the expected
access pattern to increase the performance significantly.
As evidenced by our experiments with micro logging, we
have enabled a performance optimization unavailable in
previous flash file systems, while reducing the memory
complexity to O(1) per open file.

Our scientific contributions are threefold. First, we
show that a structured node-local storage system can
provide a generic feature set using O(1) RAM per file.
Second, we introduce micro logs and quantify the ef-
fects of tuning the parameters for arbitrary workloads.
Third, we evaluate the Coffee file system in a network-
ing perspective by implementing storage abstractions
for the networking stack. We show that Coffee’s high
throughput makes it a suitable application-managed vir-
tual memory back-end even for intensive workloads.

The paper proceeds as follows. We introduce flash
memories and their uses in storage-centric sensor net-
works in Section 2. In Section 3 we present the design
of Coffee and describe the algorithms beneath the pro-
gramming interface. Thereafter we discuss implemen-
tation aspects in Section 4. We divide the experimen-
tal evaluation into two parts: Section 5 quantifies Cof-
fee’s low-level operations, whereas Section 6 evaluates
how Coffee performs in real applications by studying
two storage abstractions for networking. After cover-
ing related work in Section 7, we conclude the paper in
Section 8.

2. STORAGE IN SENSOR NETWORKS

The presence of on-board flash storage devices on state-
of-the-art sensor network hardware platforms has in-
spired recent work in storage-centric sensor networks
and sensor network virtual memory. The availability
and low cost of flash memory devices have made them

a popular choice for embedded systems. Platforms hav-
ing on-board flash memory storage include the Tmote
Sky [22], the Intel Mote, and the MicaZ. Flash mem-
ory is suitable for sensor networks because it is energy-
efficient, shock-resistant, small, and cheap. Sensor nodes
are typically equipped with flash memory in the range
between 100 kb and 1 Mb, but non-volatile memories in
the gigabyte class, such as SD cards, are emerging [25].

2.1 Storage Centricity

Wireless sensor networks were in the beginning viewed
as communication-centric; the primary objective of wire-
less sensor networks was to communicate sensor data
from the sensor nodes towards one or more base sta-
tions, possibly aggregating or processing the data within
the network. Recently, however, the monetary cost and
energy consumption of on-board storage has been re-
duced, leading to a reconsideration of the communica-
tion centric view of sensor networks. This development
leads to the possibility that sensor networks should be
viewed as storage-centric rather than communication-
centric [3,7,15]. In a storage-centric sensor network, the
primary objective of the network is to store the sensed
data. The data can later be collected from the network
when needed.

Recent work has shown that batching data may im-
prove energy efficiency [7, 16]. By batching the sensed
data instead of immediately sending it, we save more
energy since the radio duty cycle can be significantly re-
duced. Several recent sensor network deployments use
data batching; examples include volcano monitoring [26]
and bridge health monitoring [12].

In storage-centric sensor networks sensed and collected
data must be delay-tolerant. For delay-sensitive data,
a communication-centric approach is better. Examples
of delay-tolerant data are temperature logs, camera im-
ages, and structural health monitoring data. Examples
of delay-sensitive data are intrusion detection data, fire
alarms, and industrial control.

Storage-centric sensor networks require storage facil-
ities on the nodes and a mechanism for retrieving the
data from the nodes. In this paper, we focus on the
node-level storage and note that protocols for batch
data transfer exist [11].

2.2 Using Storage as Virtual Memory

There are several recent proposals for extending the
limited RAM of sensor nodes by using the on-board
flash memory. Examples that use the flash as a swap
area include interpreted virtual machines [1], compile-
time mechanisms [13], and run-time hybrid interpreta-
tion models such as the t-kernel [10].

Because memory accesses in a virtual memory set-
ting may be frequent, using on-board storage for virtual

350

memory requires a fast underlying storage system. In
the absence of this, virtual memory mechanisms gener-
ally access the on-board flash device directly. Accessing
the flash device directly, though, requires that the appli-
cation manages wear levelling, garbage collection, and
space allocation. With this paper, we present a storage
abstraction that provides these services while having a
throughput close to what is achievable by directly us-
ing the underlying flash device. As shown through our
experiments, mechanisms such as virtual memory can
be implemented efficiently without requiring the appli-
cation to manage wear levelling, garbage collection, and
storage allocation.

2.3 Flash Memory Semantics

Flash memories have three characteristic operations:
read, program, and erase. Unlike magnetic disks, a part
of the flash memory must be erased before overwriting
data. These parts are called erase sectors and are typi-
cally several kilobytes large. All bits in the erase sector
are set to 1 initially, but a subset of these can be pro-
grammed to 0 in one operation. The read operation, in
contrast, can be done an arbitrary amount of times, ei-
ther on page or byte granularity depending on the flash
memory type.

Flash memories are classified as NOR flash or NAND
flash. NOR flash is generally memory-mappable and
permits random access I/O, but the erase sectors can
be large. NAND flash requires page-based I/O and is
not memory-mappable, though the erase sectors can be
considerably smaller than those of NOR flash. NAND
flash memories are generally limited to sequential writes
within an erase sector, but the erase sector is often sig-
nificantly smaller than on a NOR flash memory of sim-
ilar size.

2.4 Flash Semantics Affect File System Design

File system designs for magnetic disks are not appli-
cable in sensor network hardware for two reasons. First,
the memory constraints of sensor devices make it unfea-
sible to hold large buffer caches or metadata structures
in RAM. Hence, the flash memory should store the ma-
jority of the metadata to suppress the effect having very
little memory available. Second, as described above,
flash memories have different write semantics than mag-
netic disks. Flash memory bits can be programmed with
a low overhead, but resetting programmed bits requires
an expensive sector erase. The erase takes time and
causes sectors to wear out after erasing many times.
Consequently, fine-grained modifications are more com-
plex to handle when using flash memory.

Flash file systems usually follow the conventional log
structure design to mitigate flash memory semantics.
Essentially, the log structure is a a circular log where ev-

Written data Reserved space

Free

Index
Table

Free

HH

Original contiguous file

Log records

Micro log file

Micro log pointer

Figure 1: The file layout in the flash memory. Files
consist of reserved consecutive pages and start with a
header (H). Modified files are linked with a micro log
file containing the most recent data.

ery record belongs to a certain file. Records of different
files are intertwined, and are typically distinguished by
a file id, a region in the file, and a record age. Log struc-
tures generally require linked lists of regions in RAM,
since the performance would be degraded severely if the
file would be traversed in flash. The conventional log
structure does not scale well with the flash storage size,
which can be several orders of magnitude larger than
the RAM in sensor devices. Moreover, the garbage col-
lection procedure is further affected by the overhead of
moving active pages from the oldest sector towards the
end of the log.

3. COFFEE

Coffee is a portable, high-speed file system for sensor
devices equipped with flash memories. While using a
simplistic sequential page structure for each file, we in-
troduce the concept of micro logs to handle file modifica-
tions without imposing a spanning log structure. Con-
ventional log structures typically require considerable
memory for caching file metadata. Micro logs allow us
to configure the logs of individual files with a tunable
trade-off between space and speed. In essence, Coffee
has an extensive interface for high level storage abstrac-
tions, while using a small memory footprint: each open
file uses O(1) RAM. As sensor networks perform a vast
range of sensing and networking tasks with different re-
quirements, the storage layer should be optimizable for
many kinds of abstractions.

3.1 Design Principles

The principles that we design Coffee on concern both
flash memory semantics and relevant parameters for sen-
sor network hardware and applications. The file sys-
tem must firstly commensurate with the memory and
code size constraints in sensor devices. The micro con-
trollers of sensor devices typically have RAM in the
range of 1-10 kb, and code memory in the range of 10-
100 kb. Storage systems using large buffer caches and
data structures to increase the speed of file and direc-
tory operations are unsuitable for general purpose use in
sensor networks. It is desirable to have a small memory
footprints–regardless of the file sizes.

351

The large number of sensor devices and storage types
motivates a flexible design that does not rely on strin-
gent assumptions of a specific flash memory device. Nev-
ertheless, we assume that the storage device is not in vi-
olation of the following semantics, though Coffee adapts
well to memory types with more relaxed rules.

1. The flash memory is divided into erase sectors of
uniform size.

2. Erasing sets all bits in an erase sector to 1.

3. An erase sector consists of a set of pages which can
be programmed and read in random order.

4. Programming switches a subset of the bits in a
page from 1 to 0.

These conditions are satisfied by a large variety of
non-volatile memories, including NOR flash, mixed se-
mantics flash (e.g., AT45DB in the Mica2), EEPROM,
and SD memory cards. Nevertheless, if the flash mem-
ory requires page-based I/O, Coffee must emulate ran-
dom access I/O within a page. Because NAND requires
sequential page writes within erase sectors, it is less
suited for fast random writing, unless large metadata
structures can be accommodated in RAM. Coffee pro-
vides a limited functionality without random writes in
the subset of NAND flash memories whose sectors are
considerably larger than their pages are.

Performance is also important; both in terms of la-
tency and throughput. Long-running file operations
may affect time-critical operations. For instance, the
MAC protocol timing and scheduled sensor readings are
negatively affected by slow file operations. Similarly,
motes that store large quantities of data, such as cam-
era images, require a file system with high-speed append
operations. The sequential write trait of both periodic
sensing applications and high-rate streaming applica-
tions motivates a file system that supports append op-
erations with low execution and I/O overhead.

3.2 Page Structure

Coffee divides the flash memory into logical pages
whose sizes typically match those of the underlying flash
memory pages. A file is stored as a contiguous group of
pages–much like file system extents. Extents are used
in numerous file systems to reduce fragmentation, but
we draw advantage from this structure to reduce the file
system complexity instead. As illustrated in Figure 1,
a file consists of a header, a data area, and possibly
some free space up to the file boundary. File pages are
allocated either implicitly by opening a new file, or ex-
plicitly by calling the file reservation function. The page
allocation algorithm uses a first-fit policy.

0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Log file start page |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Log record amount |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Log record size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum pages |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| EOF hint |A|L|O|M|I| | |V|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: The file metadata contains micro log informa-
tion and file status indicators.

Coffee allocates a pre-defined amount of pages if the
file size is not known beforehand. Later on, if the re-
served size turns out to be insufficient, Coffee creates a
new larger file and copies the old file data into it. In our
experience, however, the file size is often known. For in-
stance, before accepting a file from a data dissemination
protocol, an initial protocol message typically contains
the file size. Another case is that an application may
want to allocate a certain space to make sure that there
is enough space to log sensor data, and leave the rest of
the space for secondary uses.

3.3 Minimizing Metadata in the RAM

Because of the contiguous page structure, file meta-
data uses only a small and constant memory footprint
for each file. Coffee stores metadata in a header in the
first page of a file. To increase the performance of re-
opening files, we store a small metadata cache of 8 en-
tries by default in RAM. The header is designed for
flash semantics that restrict bits to one switch after each
erase. Coffee inverts all read and written bits to have
all data initialized to zero.

As depicted in Figure 2, the file header consists of
seven fields. log page points to the first page of the
micro log. If the log is configured, log records denotes
the number of records that the log can hold, and it is
multiplied with the log record size determine the log
file size. If the log configuration fields are zero, then
Coffee uses the default values for the hardware platform.
The max pages field specifies the amount of pages that
have been reserved for the file. The eof hint points to
the part of the file containing the last written byte.

A page transits over three states: free, active, and ob-
solete. The flag field tells us the current state. The A

flag denotes a file in use. Conversely, the current page
and all remaining pages up to the next sector bound-
ary are free if this flag is not set. When the file is
deleted, the O flag is marked to indicate that the re-
served pages are obsolete. The L flag shows that the
file has been modified, and that a related log file exists.

352

The I flag identifies an isolated page. Isolated pages are
processed one at a time by all Coffee algorithms, and are
treated the same way as obsolete files. To discover gar-
bled headers–typically caused by a system reboot dur-
ing a header write operation–the V (valid) flag helps by
marking that the header data is complete. Flags have a
precedence order in which the valid flag is the most sig-
nificant, followed by the isolated flag, the obsolete flag,
the log flag, and lastly the allocated flag.

3.4 Locating Files

Directly after starting the system, Coffee is unaware of
where files are located. Once a request is made to open a
file, Coffee checks the file cache for its location. The file
cache is filled with information from prior successful file
search operations. A cache miss implies that we must
scan the flash memory sequentially for the file.

As specified in Algorithm 1, Coffee uses a quick skip
algorithm to find uncached files. The search algorithm
reads one page at a time, but is typically able to skip
many pages before reading the next page. If an obsolete
file is encountered, the algorithm jumps over the number
of pages that have been reserved for it. Otherwise, the
algorithm checks whether the file is active and if the file
name matches the name of the file being opened. If these
conditions are fulfilled, we have found the first page of
the file. If not, the reserved pages for the non-matching
file are skipped.

Coffee accelerates the search further by skipping all
pages of the current sector if a free page is encountered,
starting from the page in question. The first fit page
allocation algorithm guarantees that if a page is free,
then the following pages in that sector are also free.

Algorithm 1 File search

Input: name, a null terminated string.
Output: The file’s first page if found, -1 otherwise.

page← 0
repeat

hdr ← read header(page)
if page allocated(hdr)∧¬page obsolete(hdr) then

if filename(hdr) = name then

return page

else

page← page + max pages(hdr)
end if

else if page obsolete(hdr) then

page← page + max pages(hdr)
else

page← sector to page(next sector(page))
end if

until page ≥MAX PAGE

return −1

corresponding file data

File

Index table

Log entries

P P P P
3 2 2 5

P0 P1 P2 P3 P4 P5 P6

Log entries shadow

Figure 3: A modified Coffee file consists of data stored
both in the original file and in a micro log. Writes that
do not append data to the original file are added as
records in the micro log files.

3.5 Determining the File Length

Since the length cannot be stored and updated in the
metadata, we determine the length by using a hint of
one byte in the file header. As soon as a file is closed,
the hint byte is updated if the file length has increased.
Each bit in the hint byte represents 1

8
of the reserved

file size. The least significant bit that is set determines
where in the file that the last written byte exists. The in-
dicated area is then scanned sequentially from the back
toward the front to find the first byte whose bits are not
all ones.

3.6 Tunable Micro Logs

Flash semantics require a more complex treatment of
partial file overwrites compared to the treatment of file
appends. Like most flash file systems, Coffee enables
overwrites by logging the changes to files. To enable
log optimization and at the same time reduce the com-
plexity of the file system, we introduce a new approach
to logging. Coffee creates micro log structures on de-
mand and links them to files. The memory overhead
of log structuring is thereby reduced to only two bytes
per file descriptor that are used for storing an address
to the last record in the log. Log files are created in the
same manner as ordinary files, but they are invisible in
the directory and inaccessible through the file system
programming interface.

As shown in Figure 3, the log file contains an index
table that consists of a fixed set of pointers represent-
ing each log record. The index key refers to a non-
overlapping range in the file. This range starts at the
file offset pointer× log record size and is as long as the
specified record size. When reading from a file, the cur-
rent file offset determines which index key to search for
in the index table. The table is scanned from the last
record towards the beginning. If no record is found, the
file system concludes that the most recent data for that
particular file offset range is located in the original file.

353

We exploit the individual micro log structures of files
to introduce an interface for optimizing each micro log.
This allows application programmers to set the log record
size granularity and log file size according to the ex-
pected usage pattern of a specific file. Although this
is limited to storage devices that permit variable block
sizes for write operations, it reduces the space usage and
the I/O time on the flash memories that have this ca-
pability. This is typical for NOR flash memories, such
as the Tmote Sky’s ST M25P80.

A series of file modifications eventually causes the log
to fill up. This requires that the log and the original
file are merged. Coffee carries out this operation by
reading the file in chunks of log record size, and writing
them to a new file without a log. Finally, the old file is
deleted and thereby available for garbage collection. All
file descriptors that pointed to the old file are redirected
to the new file.

3.7 Garbage Collection

Coffee includes a garbage collector that reclaims ob-
solete pages when a file reservation request cannot be
satisfied. We depict how the garbage collector iterates
over all sectors in Algorithm 2. Page statistics are gath-
ered for each sector to decide whether to erase the sector
in question. The erase condition requires that the sector
contains at least one obsolete page and no active pages.
An obsolete file may span over more than one sector,
which means that the sector status function must re-
member where the file ends in order to correctly obtain
page states in subsequent sectors. Obsolete files that
partly belong to a sector set for erasure and partly to a
sector having active files must be split. The remaining
pages in such a file become isolated.

Unlike log-structured flash file systems, Coffee erases
any sector that satisfies the condition above, instead of
just the least recently written sector. Active pages do
not need to be copied to the end of the log structure.
Furthermore, log-structured file systems must call the
garbage collector every time the tail reaches the head,
causing potential delays in the middle of file I/O. Coffee
triggers the garbage collector only when creating files.

Irregular file creation and deletion patterns can induce
a mixture between active and deleted files that makes a
number of sectors irreclaimable for a long time. To alle-
viate this problem, a cleaning process periodically tries
to move files from sectors having a majority of obsolete
pages to sectors where most pages are free. Thereafter
the obsoleted sector will be eligible for erasure. The
cleaning process contributes to wear levelling by ensur-
ing that files do not occupy sectors for too long. The
cleaning process runs when removing a file, if a specified
amount of time has passed since its previous sweep over
the flash.

Algorithm 2 Garbage collection

sectors in row ← 0
longest in row ← 0
for all sector ∈ SECTORS do

s← get sector status(sector)
if |active(s)| = 0 ∧ |obsolete(s)| > 0 then

erase(sector)
sectors in row ← sectors in row + 1
if sectors in row > longest row then

longest row ← sectors in row

end if

else

sectors in row ← 0
end if

end for

return longest row

3.8 Wear Levelling Policy

Flash memory is prone to wear: every time a page
is erased increases the chance of memory corruption.
With current flash memories, a flash page is guaranteed
to last for about 100,000 erasures. With an expected
lifetime of 10 years, memory corruption may occur if
pages are erased too often. The purpose of wear levelling
is to spread sector erases evenly to minimize the risk of
damaging some sectors much earlier than others.

Wear levelling is irrelevant for the main type of storage-
centric application that simply logs sensor data. In this
case, it is highly unlikely that the number of erase cycles
per sectors will come close to the guaranteed amount
of the vendor. In a traffic-intensive network, however,
where routing nodes use packet queues, wear levelling is
important if the flash memory must endure for years.

Coffee achieves automatic wear levelling as part of the
garbage collection policy. Coffee delays garbage collec-
tion until a space reservation request cannot be fulfilled.
Page allocations are thereby rotated over the full flash
memory to a high degree, but sectors having old files will
be exempted from garbage collection until a background
process concatenates old files from different sectors into
one file.

3.9 Fault Recovery

A sensor network storage system must be resistant to
crashes because nodes generally have no memory pro-
tection that can isolate malfunctioning software. Mal-
functioning software can thus influence the file system
negatively if memory pointers are garbled. Moreover,
watchdog timers may be enabled to restart a node if an
operation does not terminate within a bounded time.
Even when restarting during a file operation, the file
system should prevent file inconsistencies after the sys-
tem has been restarted. Furthermore, sensor measure-

354

ment data that has been collected for a long time must
be easily extractable if the system fails.

The fault recovery mechanism in Coffee addresses the
concerns above in two ways. First, sequential page al-
locations simplify file reconstruction since they do not
rely on complex file structure that may be partially de-
stroyed. Second, metadata updates are limited to one
consecutive area of the flash in a file header, and there-
fore do not cause erroneous directory structures if they
are stopped in the middle of their operation.

One of four different file modification operations can
be active during a crash: a header modification, a log
index entry addition, a log data addition, or a file ap-
pend. Each operation is self-contained and sequential
within its own designated area in a file. Consequently,
a possible crash in the midst of a file operation will only
affect the file in question, and the older contents of the
file will be recoverable because of the sequential page
structures in both original files and micro logs.

4. IMPLEMENTATION

We have implemented Coffee in the Contiki operating
system [5] but the implementation is not Contiki-specific
and can be ported to other systems and flash devices.
The implementation is written in C and consists of ap-
proximately 1200 lines of code, including comments. To
validate Coffee’s portability, we have ported Coffee to an
EEPROM device by changing fewer than ten configura-
tion parameters and by changing the device-dependent
implementations of the write, read, and erase abstrac-
tions used by the file system.

The file system programming interface conforms with
the Contiki File System (CFS) API which provides a set
of basic file and directory manipulation and access func-
tions. As in the Unix world, files are accessed through
file descriptors. Coffee’s two most complex functions,
garbage collection and log merging, are called implic-
itly, and the details are hidden from application devel-
opers. In addition, we augment the CFS API with two
functions: coffee reserve, and coffee configure log. The
reserve function allocates space for a file before opening
it for the first time. The coffee configure log function
offers an optimization opportunity for the micro log file
prior to creating it on demand.

Coffee enables directory listings using the cfs opendir,
cfs readdir, and cfs closedir functions. By iterating over
the complete flash memory with cfs readdir, which uses
Coffee’s skip algorithm, we obtain the name and size of
each file. To simplify directory storage, the file system
hierarchy is flat, but this is generally not a limitation
in sensor devices since the number of files is typically
small. Nevertheless, Coffee could be extended to sup-
port a deep hierarchy by using the conventional method
of storing directory data in files.

Table 1: Micro benchmark for the Coffee operations

Operation Avg. time (ms) Std.dev.

open (uncached) 131.06 36.60
modify (initial) 51.76 24.28

open (cached) 26.73 0.17
modify (subsequent) 9.52 0
read (log) 7.32 0.51
append 7.08 0.05
read (original data) 6.35 0

close 0.73 0.11
seek 0.61 0.17

5. EXPERIMENTAL EVALUATION

We evaluate Coffee’s operations through a series of
benchmarks, and also measure its memory footprint and
energy consumption. We have chosen a set of met-
rics that are justified by the needs in various real sen-
sor network application scenarios. As the storage sys-
tem is node-local, we conduct the experiments on a
single Tmote Sky node [22]. The Tmote Sky has an
MSP430F1611 processor, 10kb RAM, 48kb internal flash
memory, and an ST M25P80 external flash module of
1Mb. The external flash memory is accessed through a
75MHz serial peripheral interface (SPI) bus. The page
write operation takes 1.5 ms and the erase operation
takes 2 s. Sectors are 64kb large and consist of 256
pages. Although the M25P80 uses the notion of pages,
single bytes can be read and written randomly.

5.1 Micro Benchmark

To quantify the execution time of each of the main
Coffee operations, we have devised a micro benchmark.
After running the benchmark 100 times, we calculate
the average time and standard deviation of the opera-
tions and round all values to two decimals. The read,
append, and modify operations use page-sized buffers,
and the file size is the default 4kb. As shown in Table 1,
the operations can be divided into three groups; search
and allocations, read and writes, and processor-based
operations.

The most used group of functions is in the middle of
the table. Being based on a small amount of I/O opera-
tions, they are more deterministic because no expensive
search is needed. Instead, a fixed amount of bytes are
read from or written to the flash memory at a known
location. Hence, only small factors such as intermittent
interrupt handling contribute to the variance.

A consequence of Coffee’s design is that the search
and allocation functions exhibit a significantly longer
execution time and standard deviation than the other
functions. The relatively high standard deviations of

355

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64 128 256

D
at

a
ra

te
 (

kb
/s

)

Buffer size (bytes)

Direct read
Coffee read
Direct write

Coffee write

Figure 4: The performance overhead of sequential writes
compared to direct flash access is negligible. Small
buffers cause a higher processor execution cost per byte.
Plotted on a lin-log scale.

these functions stem from the uncertainty of where the
files are located in the flash memory. The initial file
modification generates a log file allocation which also
involves searching for available space. The search al-
gorithm for finding available space is similar to that of
finding a file, except for the condition to terminate the
search. These two operations are uncommon, however,
since the search results are cached.

The third and final group is the functions that are
done mostly without touching the flash memory. The
seek operation is entirely done in the CPU by doing
a boundary check and then setting an offset in a file
descriptor structure. The close operation writes a byte
to the file metadata if the end of the file has advanced
sufficiently to increase the EOF hint value.

5.2 Sequential I/O Performance

We evaluate Coffee’s sequential read and write perfor-
mance by reading and writing files to Coffee and vary
the size of the files. The results, as plotted in Fig-
ure 4, show that the sequential write performance is
47.1 kb/s and the sequential read performance is 56.9
kb/s. Like log-structured file systems such as ELF [2],
Coffee achieves a high sequential throughput. Coffee’s
sequential write throughput is at most 8% slower than
direct flash driver access when using 256 byte chunks.
We have verified that the performance is sustained as
the files grow.

5.3 Micro Log Optimization

We evaluate and compare the reading and writing per-
formance between the default log configuration and a
user-optimized log configuration. The latter leverages
the flexibility of Coffee’s micro logs to set the log records
just large enough to hold individual user data units.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 32 64 96 128 160 192 224 256

W
rit

e
tim

e
(m

s)

Data unit length (bytes)

Write time with default and user optimized log record lengths

default log record length (= page size)
optimized log record length (= data unit length)

Figure 5: Writing to a user optimized log is faster than
to a default log, because the former induces no read-
modify overhead and no cross-page writing overhead.

 0

 5

 10

 15

 20

 32 64 96 128 160 192 224 256

R
ea

d
tim

e
(m

s)

Data unit length (bytes)

Read time with default and user optimzed log record lengths

default log record length (= page size)
optimized log record length (= data unit length)

Figure 6: Reading from a user optimized log is slightly
faster than from a default log because of elimination of
cross-page reading.

Assuming that users access and update data units ran-
domly, we expect that the I/O speed can be accelerated
by using a customized log record length.

In our experiments, we construct two files: one with
the default log configuration and the other with the op-
timized log configuration. Each file consists of 10 data
units of equal sizes. We loop through both files for 5
times, modifying every data unit for 5 times and verify-
ing each modification with a read. We iterate the test for
a range of data unit lengths from 16 bytes to 256 bytes.
After measuring the time for each write and each read,
we plot the performance of the two log configurations
based on the average times.

Figure 5 shows that optimized log records reduce the
write times substantially because Coffee simply fills a
new record with data. There is no need to carry out a
normal read-modify-update sequence since a complete
record is overshadowed by the new data. If the write
buffer differs in size from the log record, Coffee must
read the most recent data from the file to merge the

356

contents with the write buffer into a new log record.
This explains the sudden fall when the write buffer size
finally matches the default log record size.

Figure 6 shows that the read performance of the con-
figured log records and the default log records are com-
parable. The read log function stops reading from the
flash as soon as the read buffer has been filled, which
explains why the difference is not as large as when writ-
ing. Depending on the starting offset and buffer size,
the default log read may break the read over a page and
then read the log of the next page. Hence, the default
log becomes slightly slower on average and the proba-
bility that the read must be broken is proportional to
the write size.

5.4 Memory Footprint

Since miniaturization and cost reduction are driving
the development of economical and practical sensor net-
works of scale, memory remains to be a scarce resource.
One of the objectives of Coffee is to reduce the memory
footprints significantly compared with earlier file sys-
tems for flash memories and sensor networks. We mea-
sure the memory footprints of temporary operations and
static data.

Figure 7 shows the different parts that form Coffee’s
memory footprint. The file metadata and file descrip-
tors have a constant size, whereas the I/O operations
and garbage collection allocate most of their memory
on the stack. Reading and writing to the log requires
an order of magnitude more memory than other opera-
tions use; the log index table is preferably processed in
large portions to improve the performance. Log writing
also requires that up to a complete log record is copied
into a buffer before partly overwriting the data in the
buffer and writing the updated record into the log.

We compare the ROM and RAM footprints of Coffee
with existing systems in Figure 8. Coffee’s ROM foot-
print is approximately one third of the footprints of Cap-
sule [15] and the Matchbox file system. The static RAM
footprint of Coffee is smaller than 200 bytes, which is
approximately one fifth of the RAM footprint of Match-
box and one eighth of that of Capsule. Unlike Capsule
and Matchbox, Coffee does not need more RAM when
the number of files or the sizes of files increase. An open
file in Coffee requires only 15 bytes of memory when us-
ing a 32-bit file offset type.

A general figure of the ELF memory consumption can-
not be determined because it depends on the amount of
files in use and their sizes. Furthermore, ELF keeps
track of free pages by using a bitmap. The bitmap
requires 256 bytes to represent a 512kb flash memory,
but it becomes cumbersome with larger flash memories.
Coffee puts no data in the RAM for this purpose since
free pages are contiguous in every sector.

 0

 50

 100

 150

Garbage
collection

File
descriptors

File
metadata

M
em

or
y

(b
yt

es
)

Static memory footprint

 0

 200

 400

 600

 800

 1000

Append Read Read logModify

M
em

or
y

(b
yt

es
)

Maximum stack memory usage

Figure 7: The total static memory footprint of Coffee is
less than 200 bytes and is not affected by the number of
files in the file system. The maximum stack memory us-
age for the most common operations, append and read,
is less than 50 bytes each.

 0

 8

 16

 24

Coffee

Capsule

M
atchbox

 0
 10
 20
 30
 40
 50

F
oo

tp
rin

t (
ki

lo
by

te
s)

T
m

ot
e

S
ky

 R
O

M
 (

%
)

ROM footprint

 0

 0.5

 1

 1.5

 2

Coffee

Capsule

M
atchbox

 0

 5

 10

 15

 20

F
oo

tp
rin

t (
ki

lo
by

te
s)

T
m

ot
e

S
ky

 R
A

M
 (

%
)

RAM footprint

Figure 8: The memory footprint of a storage system
must be small to leave room for applications, protocols,
and other parts of the system. The Coffee code occupies
approximately 10% of the total code ROM on a Tmote
Sky and uses less than 5% of the RAM.

5.5 Energy Consumption

Although idle listening still dominates the energy con-
sumption profile of most sensor devices, MAC protocols
are becoming efficient to the degree that the radio lis-
tens less than 1% of the time in an idle network [18]. As
storage-centric sensor networks are mostly idle by na-
ture, the energy consumption of the storage system be-
comes more interesting since its relative share increases.

We look at the energy profiles of file reads and file
writes to determine the added energy cost of Coffee.
The operations use a file of 1kb, and we vary the chunk
size to see how the overhead is amortized over more
bytes as the chunk size increases. We quantify the en-
ergy consumption by using Contiki’s software-based on-
line energy estimation method [6].

The results are in Figure 9. When the chunk size is
1 byte, the overhead in terms of CPU energy is large,
but the cost of the flash writes is also large per byte.
The reason is that Coffee’s processing of the operation
is constant in time, regardless of chunk size, whereas
the flash energy has a linear relation with the chunk
size. When the chunk size increases towards 256 bytes–
the flash page size–the overhead is negligible. The case
of flash reads is slightly different: the CPU processing
energy is larger when the chunk size is small, but the
energy savings in flash reads flatten out quickly and be-

357

 0.1

 1

 10

1 2 4 8 16 32 64 128 256E
ne

rg
y

co
ns

um
pt

io
n

pe
r

by
te

 (
m

J)

Chunk size (bytes)

Energy profile

Read (Flash)
Write (CPU)
Read (CPU)
Write (Flash)

Figure 9: The energy overhead of using Coffee, and ini-
tializing the flash for the operations, is amortized as the
chunk size increases. The axis use log scales.

come more costly from a 4 byte chunk size. The flash
operations require initial setup such as turning off inter-
rupts and transmitting a few bytes that tells the flash
where to write or read the data.

6. A NETWORKING PERSPECTIVE

We look at Coffee in a networking perspective to an-
swer the question if flash storage is suitable for compo-
nents in communication stacks. To our knowledge, we
are the first to perform such a study in a sensor network
context. Further, this perspective serves as a demon-
stration that Coffee can be used to implement various
services that are desirable in sensor systems. The com-
ponents that use the file system can be viewed as an
application-managed virtual memory, enabling us to use
extended data structures that were earlier restricted to
a portion of the RAM.

To quantify Coffee’s capability and performance for
storing and retrieving high-level objects, we have im-
plemented a routing table that stores the route entries
in Coffee, as well as a packet queuing module that uses
Coffee to store packets. We measure the performance
and implementation complexity of our mechanisms and
show that the use of configured micro logs results in
high performance.

6.1 Storing Routing Tables in Coffee

The trend toward IPv6-enabled sensor networks draws
new attention to the problem of storing large data struc-
tures for routing and forwarding information. Neighbor
discovery cache entries can include an IPv6 address, a
link layer address, state information, timers, and pos-
sibly also a queued packet. Due to the limited RAM
on most sensor devices, the neighbor discovery mod-
ule typically keeps information about few neighbors. In

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Route table updates

Route lookup + packet transmission
Packet transmission

Figure 10: The lookup time for a routing entry depends
on how many updates have been made to the routing ta-
ble because updates are stored in the log. The sawtooth
pattern is caused by automatic log merges.

IPv6, the limited neighbor table causes neighbor entry
replacements and expensive protocol exchanges if a sen-
sor node has a large neighborhood.

The sensor network performance in general may also
benefit from having virtually unrestricted routing ta-
bles. By implementing the routing table on top of Cof-
fee, we are able to store considerably more routes in
it and at the same time free up valuable RAM. Addi-
tionally, by having a persistent routing table, the node
can quickly resume operations after an eventual restart.
When evaluating the Collection Tree Protocol, Fonseca
et al. [8] show that the average number of transmissions
drops significantly when allowing the sensor nodes to
accommodate as many routes as they want.

Our experiment consists of a basic routing table that
uses a Coffee file as a storage back-end. The routing
table entries are 10 bytes large and consist of a node id, a
routing metric, a next hop id, and a timestamp. Routes
are added, deleted, modified, or retrieved through our
routing API that uses file operations underneath it. The
implementation consists of 53 lines of C code and uses
2 bytes of static memory and a maximum of 4 bytes on
the stack.

Initially, we insert 1000 routes with random routing
metrics. We change the routing metrics of 10 random
destinations every second. The routing table file is 1kb,
whereas the micro log is 512 bytes large and has 10 byte
log records to reflect the routing entry. Coffee automat-
ically merges the log after approximately every 30 route
entry updates, since the file header and the index table
also require space in the log file.

Figure 10 shows that the route lookup time depends
on the number of records in the log and the log size. The
send time constitutes both the copying of the buffer to
the radio and the actual transmission of the data. The

358

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

O
pe

ra
tio

n
tim

e
(m

ill
is

ec
on

ds
)

Packet size (bytes)

Enqueue
Dequeue

Send

Figure 11: Enqueuing and dequeuing packets is fast:
Less than four milliseconds for a 100 byte packet. In
comparison, sending a 100-byte packet with the CC2420
radio device of the Tmote Sky takes eight milliseconds.

route lookups in the storage backed table are faster than
packet transmission, and the lookup time is independent
of the number changes in the routing table.

6.2 Queuing Packets through Coffee

Packet queuing tests Coffee in different way than rout-
ing tables: packets must be queued and dequeued quickly
to adhere to the timing constraints of MAC protocols.
Furthermore, queued packets are likely larger than rout-
ing table entries, since packets can be over 100 octets
large in Wireless HART and 6LoWPAN [17]. Neverthe-
less, in comparison with the routing table, the number
of entries is typically rather small in our experience.
Examples of when packet queuing is used are data ag-
gregation, delay-tolerant data mules, and mobile sensor
networks with temporary connectivity loss.

We implement the packet queue by using common file
system operations on a single file. The packet queue
uses two pointers: one to the next packet in line for
removal and one to the end of the queue where packets
are added. Both pointers are incremented by the packet
size modulo the file size.

The performance of the enqueue and dequeue oper-
ations is shown in Figure 11. The execution time in-
creases linearly with the packet size. Both enqueuing
and dequeuing is quick when compared with sending
one packet over the radio: approximately 66% as fast as
sending a packet. We do not expect that the time re-
quired for packet enqueuing and dequeuing to affect the
system performance significantly, because most sensor
network applications are not delay-sensitive. For high-
throughput applications, recent work has shown that it
is possible to achieve high throughput even with expen-
sive node-local copying operations [21].

7. RELATED WORK

There is a considerable body of work on storage sys-
tems for flash memories that has influenced us. The
ELF file system [2] is the work closest to ours. Like
Coffee, ELF provides an extensive feature set including
partial file overwrites, directories, and garbage collec-
tion. ELF is built on a log structure, which makes it a
suitable alternative for random writing to NAND flash
memories. Much like the conventional method, a file
is represented in RAM as a linked list of small page
groups, or nodes. Consequently, ELF allocates more
memory as the files grow. ELF alleviates the problem
of large memory requirements by using an additional
EEPROM to store metadata, but is difficult to port to
systems without such an EEPROM. ELF’s predecessor
in TinyOS, MatchBox, is more limited than ELF and
Coffee since it does not support partial file overwrites.

Capsule is another comprehensive storage system pro-
viding storage abstractions for stacks, queues, streams,
and indices. A simple file system is implemented by
using a combination of these abstractions. While pro-
viding useful storage abstractions, Capsule requires over
25kb for storing its code when all of its abstractions are
linked into the system. Hence, Capsule requires more
than half of the code memory of the Tmote Sky.

TFFS [9] is a transactional flash file system designed
for memory-constrained embedded systems. It is based
on a search structure called pruned version trees. TFFS
maps logical sector numbers to real sector numbers in
RAM and stores B-tree nodes there as well. TFFS
memory footprint matches that of Coffee on smaller
non-volatile memories, but uses significantly more RAM
on larger non-volatile memories. As sensor devices are
increasingly being equipped with SD cards of 1Gb or
more, we emphasize that it is important support large
storage devices with very limited RAM.

In addition to file systems, various efforts have been
directed towards databases and storage abstractions for
sensor devices, including FlashDB [20], DALi [24], and
MicroHash [27]. Nath and Gibbons propose a new ab-
straction for flash memory called B-FILE [19]. The B-
FILE abstraction has “semi-random” write semantics in
NAND flash, without having the large memory overhead
of log structures. The design is mainly aimed at large
sequential logs of samples and self-expiring items.

In-Page Logging (IPL) [14] is the database design that
is in a sense most similar to Coffee’s type of log struc-
ture. Both Coffee and IPL distinguish original data and
log records. IPL divides each erase unit into a large data
area and a small log region. Once the log region is full,
the data area is merged with the log region into a new
erase unit. Coffee, in contrast, can store multiple logs in
the same erase unit on demand and adapts more easily
to the workload since the log size and log record gran-

359

ularity are configurable. Coffee does not offer an ex-
plicit indexing service or a database query engine, but
provides an interface upon which such systems can be
implemented portably.

8. CONCLUSIONS

We have presented and evaluated the Coffee file sys-
tem for flash-based sensor platforms. Our experience
with Coffee has shown that it is small enough for in-
clusion by default in a sensor network OS, while also
being easily portable to a wide range of platforms. We
think that the most important aspect of Coffee is that
files are represented with a small and constant RAM
footprint. Furthermore, the tunable micro logs that we
introduce are a strong point since multiple flash mem-
ory devices support random access I/O. In a networking
perspective, we have shown that Coffee’s high through-
put and low latency make it a suitable underlying layer
for storage abstractions in the networking stack.

Acknowledgments

This work was financed by VINNOVA, the Swedish Agency
for Innovation Systems. This work has been partially
supported by CONET, the Cooperating Objects Net-
work of Excellence, funded by the European Commis-
sion under FP7 with contract number FP7-2007-2-224053.

9. REFERENCES

[1] R. Balani, C. Han, R. Kumar Rengaswamy,
I. Tsigkogiannis, and M. Srivastava. Multi-level software
reconfiguration for sensor networks. In Proceedings of ACM
& IEEE EMSOFT, pages 112–121, Seoul, Korea, 2006.

[2] H. Dai, Michael N., and R. Han. Elf: an efficient
log-structured flash file system for micro sensor nodes. In
Proceedings of ACM SenSys’04, Baltimore, MD, USA,
November 2004.

[3] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy.
Re-thinking data management for storage-centric sensor
networks. In Proceedings of CIDR’07, Asilomar, CA, USA,
January 2007.

[4] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time
dynamic linking for reprogramming wireless sensor
networks. In Proceedings of ACM SenSys’06, Boulder,
USA, November 2006.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny networked
sensors. In Proceedings of Emnets I, Tampa, Florida, USA,
November 2004.

[6] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He.
Software-based on-line energy estimation for sensor nodes.
In Proceedings of Emnets IV, Cork, Ireland, June 2007.

[7] P. Dutta, D. Culler, and S. Shenker. Procrastination might
lead to a longer and more useful life. In Proceedings of
HotNets-VI, Atlanta, GA, USA, November 2007.

[8] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis.
Four-bit wireless link estimation. In ACM HotNets-VI,
Atlanta, Georgia, USA, November 2007.

[9] E. Gal and S. Toledo. A transactional flash file system for
microcontrollers. In USENIX Annual Technical Conference,
Anaheim, CA, USA, April 2005.

[10] L. Gu and J. Stankovic. t-kernel: providing reliable OS
support to wireless sensor networks. In Proceedings of ACM
SenSys’06, Boulder, Colorado, USA, November 2006.

[11] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler,
P. Levis, S. Shenker, and I. Stoica. Flush: A reliable bulk
transport protocol for multihop wireless networks. In
Proceedings of ACM SenSys’07, Sydney, Australia,
November 2007.

[12] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon. Health monitoring of civil
infrastructures using wireless sensor networks. In
Proceedings of IPSN’07, pages 254–263, 2007.

[13] A. Lachenmann, P. Marrón, M. Gauger, D. Minder,
O. Saukh, and K. Rothermel. Removing the memory
limitations of sensor networks with flash-based virtual
memory. SIGOPS Oper. Syst. Rev., 41(3):131–144, 2007.

[14] S-W. Lee and B. Moon. Design of flash-based dbms: an
in-page logging approach. In Proceedings of SIGMOD ’07,
2007.

[15] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy.
Capsule: an energy-optimized object storage system for
memory-constrained sensor devices. In Proceedings of ACM
SenSys’06, Boulder, Colorado, USA, November 2006.

[16] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy.
Ultra-low power data storage for sensor networks. In
Proceedings of IPSN/SPOTS’06, Nashville TN, USA, April
2006.

[17] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler.
Transmission of IPv6 Packets over IEEE 802.15.4 Networks.
Internet proposed standard RFC 4944, September 2007.

[18] R. Musaloiu-E., C-J. M. Liang, and A. Terzis. Koala:
Ultra-Low Power Data Retrieval in Wireless Sensor
Networks. In Proceedings of IPSN ’08, 2008.

[19] S. Nath and P. Gibbons. Online maintenance of very large
random samples on flash storage. In Proceeings of PVLDB
’08, 2008.

[20] S. Nath and A. Kansal. FlashDB: Dynamic self-tuning
database for NAND flash. In Proceedings of IPSN’07,
Cambridge, Massachusetts, USA, April 2007.

[21] F. Österlind and A. Dunkels. Approaching the maximum
802.15.4 multi-hop throughput. In Proceedings of ACM
HotEmNets’08, June 2008.

[22] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. In Proceedings of
IPSN/SPOTS’05, Los Angeles, CA, USA, April 2005.

[23] M. Rosenblum and J. Ousterhout. The design and
implementation of a log structured file system. In
Proceedings of ACM SOSP’91, 1991.

[24] C. Sadler and M. Martonosi. DALi: a
communication-centric data abstraction layer for
energy-constrained devices in mobile sensor networks. In
Proceedings of ACM MobiSys’07, San Juan, Puerto Rico,
June 2007.

[25] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu,
A. Srinivasan, Y. Wu, W. Kang, J. Stankovic, D. Young,
and J. Porter. Luster: wireless sensor network for
environmental research. In Proceedings of ACM SenSys ’07,
2007.

[26] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In Proceedings of NSDI’06, Seattle, November
2006.

[27] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos,
and W. Najjar. MicroHash: An efficient index structure for
flash-based sensor devices. In USENIX FAST’05, San
Francisco, California, USA, 2005.

360

